
International Journal of Scientific & Engineering Research Volume 3, Issue 9, September-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Achieving a Real Multitasking, Multiprocessing
and Multithreading by using Monitors

 Authors- Mr. Manojkumar S. Sonawane , Ms.Mayura V. Gujarathi

Abstract :

Any object or thing in computer has its own “Monitor” So at a time only one task (program, process, or thread) can enter into monitor. So point to

discuss is, at the depth or by looking from monitors view Where is the Multitasking (Multiprogramming, Multiprocessing, Multi threading)????? Even

though there are DUAL Core Processors. So this paper discusses how we can achieve a real Multitasking, Multiprocessing & Multithreading by creating

and maintaining number of monitors.

Index Term:

 Monitor,Semaphor,Multitasking,Multithreading,Multiprocessing,Dual core processors, Synchronization mechanism.

—————————— ——————————

1. INTRODUCTION

Today, a large number of software solutions are

multi-threaded. Many of our desktop applications, such as
word processors and web browsers, require multiple tasks
executing concurrently to implement a seamless solution.
Company services, such as purchasing or scheduling, use
web-based, multi-tier solutions that must scale to allow
millions of simultaneous users to perform transactions that
access shared data. Though multi-threading enable the
creation of complex systems, it introduces complexities in
their development. When multiple threads are executed
within a system, the execution order and time allotted for
each is non-deterministic. As a result, they may display
different behaviors from execution to execution. This non-
determinism must be managed by means of thread
synchronization to ensure that threads behave as expected.

One of the strengths of the programming language Java
is its support for multithreading. This support centers on
synchronization i.e.:- coordinating activities & data access
among multiple threads. The mechanism used to support
synchronization can be Monitor, Semaphore, Mutex and so
on.

2. MONITORS

A monitor is like a building that contains one special
room that can be occupied by only one thread at a time. The
room usually contains some data. From the time a thread
enters this room to the time it leaves, it has exclusive access
to any data in the room. Entering the monitor building is
called "entering the monitor." Entering the special room
inside the building is called "acquiring the monitor."

Occupying the room is called "owning the monitor," and
leaving the room is called "releasing the monitor." Leaving
the entire building is called "exiting the monitor." In
addition to being associated with a bit of data, a monitor is
associated with one or more bits of code, which in this
paper will be called monitor regions. A monitor region is
code that needs to be executed as one indivisible operation
with respect to a particular monitor.

2.1 Why monitors?

Concurrency has always been an OS issue
Resource allocation is necessary among competing

processes
Timer interrupts
Existing synchronization mechanisms (semaphores,

locks) are subject to hard-to-find, subtle bugs.
One thread must be able to execute a monitor region

from beginning to end without another thread concurrently
executing a monitor region of the same monitor. A monitor
enforces this one-thread-at-a-time execution of its monitor
regions. The only way a thread can enter a monitor is by
arriving at the beginning of one of the monitor regions
associated with that monitor. The only way a thread can
move forward and execute the monitor region is by
acquiring the monitor. When a thread arrives at the
beginning of a monitor region, it is placed into an entry set
for the associated monitor. The entry set is like the front
hallway of the monitor building. If no other thread is
waiting in the entry set and no other thread currently owns
the monitor, the thread acquires the monitor and continues
executing the monitor region. When the thread finishes
executing the monitor region, it exits (and releases) the
monitor.

The synchronization supported by monitors is
cooperation are mutual exclusion and Cooperation. Mutual
exclusion helps keep threads from interfering with one

International Journal of Scientific & Engineering Research Volume 3, Issue 9, September-2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

another while sharing data, cooperation helps threads to
work together towards some common goal.

Cooperation is important when one thread needs some
data to be in a particular state and another thread is
responsible for getting the data into that state. For example,
one thread, a "read thread," may be reading data from a
buffer that another thread, a "write thread," is filling. The
read thread needs the buffer to be in a "not empty" state
before it can read any data out of the buffer. If the read
thread discovers that the buffer is empty, it must wait. The
write thread is responsible for filling the buffer with data.
Once the write thread has done some more writing, the
read thread can do some more reading. The form of
monitor used by the Java virtual machine is called a "Wait
and Notify" monitor. (It is also sometimes called a "Signal
and Continue" monitor.) In this kind of monitor, a thread
that currently owns the monitor can suspend itself inside
the monitor by executing a wait command. When a thread
executes a wait, it releases the monitor and enters a wait
set. The thread will stay suspended in the wait set until
some time after another thread executes a notify command
inside the monitor. When a thread executes a notify, it
continues to own the monitor until it releases the monitor
of its own accord, either by executing a wait or by
completing the monitor region. After the notifying thread
has released the monitor, the waiting thread will be
resurrected and will reacquire the monitor.

A graphical depiction of the kind of monitor used by a
Java virtual machine is shown in Figure. This figure shows
the monitor as three rectangles. In the center, a large
rectangle contains a single thread, the monitor's owner. On
the left, a small rectangle contains the entry set. On the
right, another small rectangle contains the wait set. Active
threads are shown as dark gray circles. Suspended threads
are shown as light gray circles.

A Java monitor is a specialized class that is used to
encapsulate application specific thread synchronization
logic in a Java program. This class consists of one or more
synchronized methods, each of which is a critical section of

the monitor and guarded by a single lock object. This lock
object is implicitly acquired and released each time a thread
enters and exits a critical section. A model of a Java monitor
can be seen in Figure.

 Fig: Model of a Java Monitor

Once a thread is executing in a synchronized method of

the monitor, all other threads attempting to execute a
synchronized method must wait in the monitor’s entry. A
thread that has entered a critical section, may exit the
critical section either by successful completion of its
method or by making a call to one of the wait primitives. If
a wait primitive is called, the thread must release its lock
after which it is moved to the monitor’s wait queue. After a
thread releases its lock and exits the critical section, a
thread is selected from the entry queue, allowing it to
acquire the lock and enter the critical section. For a threads
to exit the wait queue, another thread executing in a critical
section must make a notify or notifyAll primitive call. If the
wait queue is not empty at the time these calls are made,
one or more threads are moved from the wait queue to the
entry queue before execution resumes in the calling thread.
This type of signaling discipline is known as signal-and-
continue. The only difference between these primitives is
that the notify call will result in the selection of a random
thread from the wait queue, while a notifyAll call affects all
threads in the wait queue. It is also possible for a thread to
exit the wait queue if it called a wait primitive with a
timeout argument. In this event, if the thread is still waiting
after the timeout period has expired, it will be moved to the
entry queue. We will not address this type of wait primitive
in our approach.

 Condition variable queues:

There may be any number of condition variable queues
for a given monitor. Each queue has associated wait and
notify methods for putting tasks in the queue and taking
them out.
 The Entry queue:

Each monitor has one entry queue. When a task attempts
to access a monitor method from outside the monitor, it is

International Journal of Scientific & Engineering Research Volume 3, Issue 9, September-2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

put in the monitor’s entry queue.
 The Signaller queue:

Each monitor has one signaller queue. When a task
performs a notify, it is put in this queue.
 The Waiting queue:

Each monitor has one waiting queue. When a task is
removed from one of the condition variable queues, it is
put in this waiting queue.

2.2 Monitors: a language construct

 Monitors are a programming language construct
 Anonymous lock issues handled by compiler and OS
 Detection of invalid accesses to critical sections

happens at compile time.
 Process of detection can be automated by compiler by

scanning the text of the program.

2.3 An Abstract Monitor

name: monitor
…local declarations
…initialize local data
 proc1 (…parameters)
 …statement list
 proc2 (…parameters)
 …statement list
proc3 (…parameters)
 …statement list

Monitor Example:-
car: monitor

//monitor declaration
occupied: Boolean; occupied := false; //local

variables / initializations
nonOccupied: condition;
procedure enterCar()

//procedure
 if occupied then nonOccupied.wait;
occupied = true;
 procedure exitCar()

//procedure
 occupied = false;
 nonOccupied.signal;

2.4 Problems solved by monitors

 Mutual exclusion.
 Encapsulation of data.
 Compiler can automatically scan program text for

some types of synchronization bugs.
 Synchronization of shared data access simplified vs.

semaphores and locks.
 Good for problems that require course granularity.
 Invariants are guaranteed after waits
 Theoretically, a process that waits on a condition

doesn’t have to retest the condition when it is
awakened.

2.5 Advantages of Monitor

 Data access synchronization simplified (vs.

semaphores or locks)
 Better encapsulation.

3. PROPOSED WORK

 So my proposed work suggests we can achieve real

multitasking, multiprocessing, multithreading by creating
number of monitors for object which will execute multiple
threads at a time.

International Journal of Scientific & Engineering Research Volume 3, Issue 9, September-2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

A "ready" or "waiting" process has been loaded into

main memory and is awaiting execution on a CPU (to be
context switched onto the CPU by the dispatcher, or short-
term scheduler). There may be many "ready" processes at
any one point of the systems execution ,all other
"concurrently executing" processes will be waiting for
execution. A ready queue is used in computer scheduling.
Modern computers are capable of running many different
programs or processes at the same time. Processes that are
ready for the CPU are kept in a queue for "ready" processes.
Other processes that are waiting for an event to occur, such
as loading information from a hard drive or waiting on an
internet connection are not in the ready queue, they are
putted in waiting queue.

As shown in framework CPU will fetch one by one

process from ready queue for execution. The needed
object’s monitor will be created on the fly by using Monitor
Creation Process. The Process-Monitor Mapping Unit will
map each and every process to corresponding monitor and
will make the entry in Monitor Table.All the monitor
objects will communicate with each other for updated data
by using Message Passing.

Fig: Workflow Diagram

4. CONCLUSION

Even though monitor is a higher level, easier to use
abstraction, better encapsulation as compare to
semaphores/locks. It has several drawbacks like in
conventional multitasking, multiprocessing, multithreading
at a time only one process is able to use the object’s
monitor. So problem arises when more than one processes
needs to access same monitor at the same time. Because of
this we are not getting actual multitasking.

Using this framework process will get required monitor
whenever needed because we have created multiple
monitors of an object. So the proposed work suggests we

http://en.wikipedia.org/wiki/Primary_storage
http://en.wikipedia.org/wiki/CPU
http://en.wikipedia.org/wiki/Context_switch
http://en.wikipedia.org/wiki/Run_queue
http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/Queue_(data_structure)

International Journal of Scientific & Engineering Research Volume 3, Issue 9, September-2012 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

can achieve real multitasking, multiprocessing,
multithreading by creating number of monitors for object
which will used by multiple threads or processes at the
same time.By creating a number of monitors real
multitasking, multiprocessing, multithreading achieved
with faster speed.

5. REFERENCES

“Monitors: An Operating System Structuring Concept,”
Hoare.

1. Modern Operating Systems, Second Edition,
Tannenbaum, pp. 115-119.

2. Jon Walpole, correspondence.
3. Emerson Murphy-Hill presentation from CS533,

Winter 2005
4. http://en.wikipedia.org/wiki/C._A._R._Hoare

http://en.wikipedia.org/wiki/C._A._R._Hoare

